31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577 | class ExeKGConstructionMixin:
# see exe_kg_lib/classes/exe_kg_base.py for the definition of these attributes
exe_kg: Graph
pipeline_instance: Entity
pipeline_serializable: Pipeline
top_level_schema: KGSchema
bottom_level_schemata: Dict[str, KGSchema]
atomic_task: Entity
task: Entity
atomic_method: Entity
data_entity: Entity
pipeline: Entity
data: Entity
data_semantics: Entity
data_structure: Entity
input_kg: Graph
task_type_dict: Dict[str, int]
method_type_dict: Dict[str, int]
atomic_task_list: List[Entity]
atomic_method_list: List[Entity]
data_type_list: List[Entity]
data_semantics_list: List[Entity]
data_structure_list: List[Entity]
existing_data_entity_list: List[DataEntity]
last_created_task: Union[None, Task]
canvas_task_created: bool
shacl_shapes_s: str
def create_pipeline_task(self, pipeline_name: str, input_data_path: str, plots_output_dir: str) -> Task:
"""
Creates a pipeline task with the given parameters and adds it to the output KG.
Args:
pipeline_name (str): The name of the pipeline.
input_data_path (str): The path to the input data for the pipeline.
plots_output_dir (str): The directory to save the plots when executing the pipeline.
Returns:
Task: The created pipeline task.
"""
self.pipeline_instance = create_pipeline_task(
self.top_level_schema.namespace,
self.pipeline,
self.exe_kg,
pipeline_name,
input_data_path,
plots_output_dir,
)
self.last_created_task = self.pipeline_instance
# update the serializable simplified pipeline
self.pipeline_serializable.name = pipeline_name
self.pipeline_serializable.input_data_path = str(input_data_path)
self.pipeline_serializable.output_plots_dir = str(plots_output_dir)
return self.pipeline_instance
def create_data_entity(
self,
name: str,
source_value: str,
data_semantics_name: str,
data_structure_name: str,
) -> DataEntity:
"""
Creates a DataEntity object with the given parameters.
Args:
name (str): The name of the data entity.
source_value (str): The source value of the data entity (e.g. column name from the input dataset).
data_semantics_name (str): The name of the data semantics.
data_structure_name (str): The name of the data structure.
Returns:
DataEntity: The created DataEntity object.
"""
# add data entity to the serializable simplified pipeline
self.pipeline_serializable.add_data_entity(name, source_value, data_semantics_name, data_structure_name)
return DataEntity(
self.top_level_schema.namespace + name,
self.data_entity,
source_value,
self.top_level_schema.namespace + data_semantics_name,
self.top_level_schema.namespace + data_structure_name,
)
def create_method(self, method_type: str, params_dict: Dict[str, Union[str, int, float, dict]]) -> Method:
"""
Creates a Method object with the specified method type and parameters.
Args:
method_type (str): The type of the method.
params_dict (Dict[str, Union[str, int, float, dict]]): A dictionary containing the parameters for the method.
Returns:
Method: The created Method object.
"""
return Method(
self.top_level_schema.namespace + method_type,
self.atomic_method,
module_chain=None,
params_dict=params_dict,
)
def _add_and_link_method(
self,
method_type: str,
method_params_dict: Dict[str, Union[str, int, float, dict]],
relation_iri: str,
task_instance: Task,
namespace_to_use: Namespace,
method_extra_parent_iri: str = None,
) -> None:
"""
Adds a method instance to the ExeKG and links it to the task instance.
Args:
method_type (str): The type of the method.
method_params_dict (Dict[str, Union[str, int, float, dict]]): A dictionary containing the method parameters.
relation_iri (str): The IRI of the relation between the method instance and the task instance.
task_instance (Task): The task instance to link the method instance to.
namespace_to_use (Namespace): The namespace to use for creating the method instance.
method_extra_parent_iri (str, optional): The IRI of an additional parent for the method instance. Defaults to None.
Returns:
None
Raises:
ValueError: If any of the provided method parameters could not be added to the method instance.
"""
method_parent = Entity(namespace_to_use + method_type, self.atomic_method)
method_instance = add_instance_from_parent_with_relation(
namespace_to_use,
self.exe_kg,
method_parent,
relation_iri,
task_instance,
self.name_instance(method_parent),
method_extra_parent_iri,
)
# fetch compatible data properties from KG schema
property_list = get_method_grouped_params(
method_parent.iri,
self.top_level_schema.namespace_prefix,
self.input_kg,
inherited=method_parent.namespace == str(self.bottom_level_schemata["visu"].namespace),
)
method_params_dict_copy = method_params_dict.copy()
# add data properties to the task with given values
for property_iri, _ in property_list:
property_name = property_iri.split("#")[1]
# param_name = property_name_to_field_name(property_name)
if property_name not in method_params_dict_copy:
continue
input_value = method_params_dict_copy.pop(property_name)
literal = field_value_to_literal(input_value)
add_literal(self.exe_kg, method_instance, property_iri, literal)
if len(method_params_dict_copy) > 0:
raise ValueError(
f"Provided method parameters {method_params_dict_copy} could NOT be added to the method instance."
)
def add_task(
self,
kg_schema_short: str,
input_entity_dict: Dict[str, Union[List[DataEntity], Method]],
method_params_dict: Dict[str, Union[str, int, float, dict]],
task_type: str,
method_type: str,
) -> Task:
"""
Instantiates and adds a new task entity to the output KG.
Components attached to the task during creation: input and output data entities, and a method with properties.
Args:
kg_schema_short (str): The short name of the KG schema to use (e.g. ml, visu, etc.).
input_entity_dict (Dict[str, Union[List[DataEntity], Method]]): A dictionary containing input data entities for the task.
method_params_dict (Dict[str, Union[str, int, float, dict]]): A dictionary containing method parameters.
task_type (str): The type of the task. Defaults to None.
method_type (str): The type of the method. Defaults to None.
Returns:
Task: The created task object.
Raises:
NoResultsError: If the property connecting the task and method is not found.
"""
kg_schema_to_use = self.bottom_level_schemata[kg_schema_short]
relation_iri = (
self.top_level_schema.namespace.hasNextTask
if self.last_created_task.type != "Pipeline"
else self.top_level_schema.namespace.hasStartTask
) # use relation depending on the previous task
# instantiate task and link it with the previous one
task_class = Task(kg_schema_to_use.namespace + task_type, self.atomic_task)
added_entity = add_instance_from_parent_with_relation(
kg_schema_to_use.namespace,
self.exe_kg,
task_class,
relation_iri,
self.last_created_task,
self.name_instance(task_class),
)
task_instance = Task.from_entity(added_entity) # create Task object from Entity object
# instantiate and add given input data entities to the task
self._add_inputs_to_task(kg_schema_to_use.namespace, task_instance, input_entity_dict)
# instantiate and add output data entities to the task, as specified in the KG schema
output_names = self._add_outputs_to_task(task_instance, method_type)
# if no method is given, return the task without adding a method
if method_type is None:
self.last_created_task = task_instance # store created task
return task_instance
# fetch compatible methods and their properties from KG schema
results = list(
query_method_properties_and_methods(
self.input_kg,
self.top_level_schema.namespace_prefix,
task_instance.parent_entity.iri,
)
)
chosen_property_method = next(
filter(lambda pair: pair[1].split("#")[1] == method_type, results), None
) # match given method_type with query result
if chosen_property_method is None:
raise NoResultsError(
f"Property connecting task of type {task_type} with method of type {method_type} not found"
)
# instantiate method and link it with the task using the appropriate chosen_property_method[0] relation
self._add_and_link_method(
method_type, method_params_dict, chosen_property_method[0], task_instance, kg_schema_to_use.namespace
)
self.last_created_task = task_instance # store created task
# add task to the serializable simplified pipeline
self.pipeline_serializable.add_task(
kg_schema_short,
task_type,
method_type,
method_params_dict,
input_entity_dict,
output_names,
)
return task_instance
def _add_inputs_to_task(
self,
namespace: Namespace,
task_instance: Task,
input_entity_dict: Dict[str, Union[List[DataEntity], Method]],
) -> None:
"""
Instantiates and adds given input data entities to the given task of the output KG.
Args:
namespace (Namespace): The namespace of the task instance.
task_instance (Task): The task instance to add inputs to.
input_entity_dict (Dict[str, Union[List[DataEntity], Method]]): A dictionary mapping input entity names to a list of DataEntity instances.
"""
results = list(
get_grouped_inherited_inputs(
self.input_kg,
self.top_level_schema.namespace_prefix,
task_instance.parent_entity.iri,
)
)
for input_entity_iri, info_l in results:
input_property_iri = info_l[0][1]
input_data_structure_iris = [pair[0] for pair in info_l]
input_entity_name = input_entity_iri.split("#")[1]
if input_entity_name not in input_entity_dict:
continue
input_entity_value = input_entity_dict[input_entity_name]
if isinstance(input_entity_value, Method): # provided input is a method
if all(iri is None for iri in input_data_structure_iris):
raise ValueError(f"Expecting a DataEntity, but got a Method for {input_entity_name}.")
method = input_entity_value
# instantiate and link method to the task
self._add_and_link_method(
method.name,
method.params_dict,
input_property_iri,
task_instance,
task_instance.namespace,
method_extra_parent_iri=input_entity_iri,
)
elif isinstance(input_entity_value, list) and all(
isinstance(elem, DataEntity) for elem in input_entity_value
): # provided input is list of data entities
self._add_input_data_entities_to_task(
input_entity_iri, input_entity_value, input_property_iri, task_instance
)
else:
raise ValueError(
f"Expecting a DataEntity or a Method for {input_entity_name}, but got {type(input_entity_value)}."
)
def _add_input_data_entities_to_task(
self,
input_entity_iri: str,
input_data_entity_list: List[DataEntity],
input_property_iri: str,
task_instance: Task,
) -> None:
input_entity_name = input_entity_iri.split("#")[1]
same_input_index = 1
for input_data_entity in input_data_entity_list:
# instantiate data entity corresponding to the given input_entity_name
data_entity_iri = input_entity_iri + "_" + task_instance.name + "_" + str(same_input_index)
# instantiate given data entity
add_data_entity_instance(
self.exe_kg,
self.data,
self.top_level_schema.kg,
self.top_level_schema.namespace,
input_data_entity,
)
# instantiate and attach data entity with reference to the given data entit
data_entity = DataEntity(
data_entity_iri,
DataEntity(input_entity_iri, self.data_entity),
reference=input_data_entity.iri,
# data_structure_iri=input_data_entity.data_structure,
)
add_and_attach_data_entity(
self.exe_kg,
self.data,
self.top_level_schema.kg,
self.top_level_schema.namespace,
data_entity,
input_property_iri,
task_instance,
)
task_instance.input_dict[input_entity_name] = data_entity
same_input_index += 1
def _add_outputs_to_task(self, task_instance: Task, method_instance_type: str) -> List[str]:
"""
Instantiates and adds output data entities to the given task of the output KG.
Args:
task_instance (Task): The task instance to add outputs to.
method_instance_type (str): The type of the method instance.
If not None, it will be appended to the output data entity IRI.
If None, the task type index will be appended instead.
Returns:
List[str]: The names of the output data entities.
"""
# fetch compatible outputs from KG schema
results = list(
get_grouped_inherited_outputs(
self.input_kg,
self.top_level_schema.namespace_prefix,
task_instance.parent_entity.iri,
)
)
output_names = []
for output_parent_entity_iri, info_l in results:
data_structure_iris = [pair[0] for pair in info_l]
output_property_iri = info_l[0][1] # common input property for all data structures
output_names.append(output_parent_entity_iri.split("#")[1])
# instantiate and add data entity
output_data_entity_iri = get_task_output_name(
output_parent_entity_iri, task_instance.name, method_instance_type
)
# add and attach output data entity to the task
# attach all compatible data structures to the data entity
for data_structure_iri in data_structure_iris:
output_data_entity = DataEntity(
output_data_entity_iri,
DataEntity(output_parent_entity_iri, self.data_entity),
data_structure_iri=data_structure_iri,
)
add_and_attach_data_entity(
self.exe_kg,
self.data,
self.top_level_schema.kg,
self.top_level_schema.namespace,
output_data_entity,
output_property_iri,
task_instance,
)
task_instance.output_dict[output_parent_entity_iri.split("#")[1]] = output_data_entity
self.existing_data_entity_list.append(output_data_entity)
return output_names
def save_created_kg(self, dir_path: str, check_executability=True) -> None:
"""
Save the created ExeKG and simplified pipeline.
Args:
dir_path (str): The directory path where the files will be saved.
"""
save_exe_kg(
self.exe_kg,
self.input_kg,
self.shacl_shapes_s,
self.pipeline_serializable,
dir_path,
self.pipeline_serializable.name,
check_executability,
)
def name_instance(
self,
parent_entity: Entity,
) -> Union[None, str]:
"""
Generates a unique name for an instance based on its given parent entity.
Args:
parent_entity (Entity): The parent entity for which the instance name is generated.
Returns:
Union[None, str]: The generated instance name.
Raises:
ValueError: If the parent entity type is invalid.
"""
if parent_entity.type == "AtomicTask":
entity_type_dict = self.task_type_dict
elif parent_entity.type == "AtomicMethod":
entity_type_dict = self.method_type_dict
else:
raise ValueError(f"Cannot create instance's name due to invalid parent entity type: {parent_entity.type}")
if parent_entity.name not in entity_type_dict:
raise ValueError(f"Parent entity name {parent_entity.name} not found in entity type dictionary.")
instance_name = get_instance_name(
parent_entity.name, entity_type_dict[parent_entity.name], self.pipeline_serializable.name
)
entity_type_dict[parent_entity.name] += 1
return instance_name
def create_exe_kg_from_json(self, source: Union[Path, TextIOWrapper, str]) -> Graph:
"""
Creates an ExeKG from a JSON source that represents a pipeline.
Args:
source (Union[Path, TextIOWrapper, str]): The JSON source containing the pipeline.
Returns:
Graph: The created ExeKG.
"""
pipeline_serializable = Pipeline.from_json(source)
# create data entities
data_entities_dict = {}
for data_entity in pipeline_serializable.data_entities:
data_entities_dict[data_entity.name] = self.create_data_entity(
data_entity.name,
data_entity.source,
data_entity.data_semantics,
data_entity.data_structure,
)
# create pipeline task
self.create_pipeline_task(
pipeline_serializable.name,
pipeline_serializable.input_data_path,
pipeline_serializable.output_plots_dir,
)
# create tasks
pos_per_task_type: Dict[str, int] = {}
task_output_dicts: Dict[str, Dict[str, DataEntity]] = {}
for task in pipeline_serializable.tasks:
# replace input data entity names with DataEntity objects
input_entity_dict = deserialize_input_entity_info_dict(
task.input_entity_info_dict,
data_entities_dict,
task_output_dicts,
pipeline_serializable.name,
self.bottom_level_schemata[task.kg_schema_short].namespace,
)
# add task to the KG
added_task = self.add_task(
kg_schema_short=task.kg_schema_short,
task_type=task.task_type,
method_type=task.method_type,
method_params_dict=task.method_params_dict,
input_entity_dict=input_entity_dict,
)
pos = pos_per_task_type.get(task.task_type, 1)
# store output data entities of the added task
task_output_dicts[get_instance_name(task.task_type, pos, self.pipeline_serializable.name)] = (
added_task.output_dict
)
pos_per_task_type[task.task_type] = pos + 1
check_kg_executability(self.exe_kg + self.input_kg, self.shacl_shapes_s)
return self.exe_kg
def clear_created_kg(self) -> None:
"""
Clears the created ExeKG.
"""
self.exe_kg = Graph(bind_namespaces="rdflib")
self.exe_kg.bind(self.top_level_schema.namespace_prefix, self.top_level_schema.namespace)
for bottom_level_kg_schema in self.bottom_level_schemata.values():
self.exe_kg.bind(
bottom_level_kg_schema.namespace_prefix,
bottom_level_kg_schema.namespace,
)
self.pipeline_serializable = Pipeline()
self.pipeline_instance = None
self.existing_data_entity_list = []
self.last_created_task = None
self.canvas_task_created = False
for task_type in self.task_type_dict:
self.task_type_dict[task_type] = 1
for method_type in self.method_type_dict:
self.method_type_dict[method_type] = 1
|