blackboxopt.optimizers.random_search
RandomSearch
get_evaluation_specification(self)
[summary]
Exceptions:
Type | Description |
---|---|
OptimizationComplete |
Raised if the optimizer's |
Returns:
Type | Description |
---|---|
EvaluationSpecification |
[description] |
Source code in blackboxopt/optimizers/random_search.py
def get_evaluation_specification(self) -> EvaluationSpecification:
"""[summary]
Raises:
OptimizationComplete: Raised if the optimizer's `max_steps` are reached.
Returns:
[description]
"""
if self.n_steps >= self.max_steps:
raise OptimizationComplete()
eval_spec = EvaluationSpecification(
configuration=self.search_space.sample(),
settings={},
optimizer_info={"step": self.n_steps},
)
self.n_steps += 1
return eval_spec
report(self, evaluations)
inherited
Report one or more evaluated evaluation specifications.
NOTE: Not all optimizers support reporting results for evaluation specifications that were not proposed by the optimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
evaluations |
Union[blackboxopt.evaluation.Evaluation, Iterable[blackboxopt.evaluation.Evaluation]] |
A single evaluated evaluation specifications, or an iterable |
required |
Source code in blackboxopt/optimizers/random_search.py
def report(self, evaluations: Union[Evaluation, Iterable[Evaluation]]) -> None:
_evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations
call_functions_with_evaluations_and_collect_errors(
[functools.partial(validate_objectives, objectives=self.objectives)],
_evals,
)