blackboxopt.optimizers.random_search
RandomSearch
get_evaluation_specification(self)
[summary]
Exceptions:
Type | Description |
---|---|
OptimizationComplete |
Raised if the optimizer's |
Returns:
Type | Description |
---|---|
EvaluationSpecification |
[description] |
Source code in blackboxopt/optimizers/random_search.py
def get_evaluation_specification(self) -> EvaluationSpecification:
"""[summary]
Raises:
OptimizationComplete: Raised if the optimizer's `max_steps` are reached.
Returns:
[description]
"""
if self.n_steps >= self.max_steps:
raise OptimizationComplete()
eval_spec = EvaluationSpecification(
configuration=self.search_space.sample(),
settings={},
optimizer_info={"step": self.n_steps},
)
self.n_steps += 1
return eval_spec
report_evaluation(self, evaluation)
inherited
Report an evaluated evaluation specification.
NOTE: Not all optimizers support reporting results for evaluation specifications that were not proposed by the optimizer.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
evaluation |
Evaluation |
An evaluated evaluation specification. |
required |
Source code in blackboxopt/optimizers/random_search.py
def report_evaluation(self, evaluation: Evaluation) -> None:
raise_on_unknown_or_incomplete_objectives(
known_objectives=self.objectives,
reported_objectives=evaluation.objectives,
)
super().report_evaluation(evaluation)