Skip to content

blackboxopt.optimizers.botorch_base

SingleObjectiveBOTorchOptimizer (SingleObjectiveOptimizer)

Source code in blackboxopt/optimizers/botorch_base.py
class SingleObjectiveBOTorchOptimizer(SingleObjectiveOptimizer):
    def __init__(
        self,
        search_space: ps.ParameterSpace,
        objective: Objective,
        model: Model,
        acquisition_function_factory: Callable[[Model], AcquisitionFunction],
        af_optimizer_kwargs=None,
        num_initial_random_samples: int = 1,
        max_pending_evaluations: Optional[int] = 1,
        batch_shape: torch.Size = torch.Size(),
        logger: Optional[logging.Logger] = None,
        seed: Optional[int] = None,
        torch_dtype: torch.dtype = torch.float64,
    ):
        """Single objective BO optimizer that uses as a surrogate model the `model`
        object provided by user.

        The `model` is expected to be extended from BoTorch base model `Model` class,
        and does not require to be a GP model.

        Args:
            search_space: The space in which to optimize.
            objective: The objective to optimize.
            model: Surrogate model of `Model` type.
            acquisition_function_factory: Callable that produces an acquisition function
                instance, could also be a compatible acquisition function class.
                Only acquisition functions to be minimized are supported.
                Providing a partially initialized class is possible with, e.g.
                `functools.partial(UpperConfidenceBound, beta=6.0, maximize=False)`.
            af_optimizer_kwargs: Settings for acquisition function optimizer,
                see `botorch.optim.optimize_acqf`.
            num_initial_random_samples: Size of the initial space-filling design that
                is used before starting BO. The points are sampled randomly in the
                search space. If no random sampling is required, set it to 0.
            max_pending_evaluations: Maximum number of parallel evaluations. For
                sequential BO use the default value of 1. If no limit is required,
                set it to None.
            batch_shape: Batch dimension(s) used for batched models.
            logger: Custom logger.
            seed: A seed to make the optimization reproducible.
            torch_dtype: Torch data type used for storing the data. This needs to match
                the dtype of the model used
        """
        super().__init__(search_space=search_space, objective=objective, seed=seed)
        self.num_initial_random = num_initial_random_samples
        self.max_pending_evaluations = max_pending_evaluations
        self.batch_shape = batch_shape
        self.logger = logger or logging.getLogger("blackboxopt")

        self.torch_dtype = torch_dtype
        self.X = torch.empty(
            (*self.batch_shape, 0, len(search_space)), dtype=torch_dtype
        )
        self.losses = torch.empty((*self.batch_shape, 0, 1), dtype=torch_dtype)
        self.pending_specifications: Dict[int, EvaluationSpecification] = {}
        if seed is not None:
            torch.manual_seed(seed=seed)

        self.model = model
        self.acquisition_function_factory = acquisition_function_factory
        self.af_opt_kwargs = init_af_opt_kwargs(af_optimizer_kwargs)

    def _create_fantasy_model(self, model: Model) -> Model:
        """Create model with the pending specifications and model based
        outcomes added to the training data."""
        if not self.pending_specifications:
            # nothing to do when there are no pending specs
            return model

        pending_X = torch.tensor(
            np.array(
                [
                    self.search_space.to_numerical(e.configuration)
                    for e in self.pending_specifications.values()
                ]
            ),
            dtype=self.torch_dtype,
        )

        model = model.fantasize(pending_X, IIDNormalSampler(1), observation_noise=False)

        if isinstance(model, ExactGP):
            # ExactGP.fantasize extends model's X and Y with batch_size, even if
            # originally not given -> need to reshape these to their original
            # representation
            n_samples = model.train_targets.size(-1)
            n_features = len(self.search_space)
            model.train_inputs[0] = model.train_inputs[0].reshape(
                torch.Size((*self.batch_shape, n_samples, n_features))
            )
            model.train_targets = model.train_targets.reshape(
                torch.Size((*self.batch_shape, n_samples, 1))
            )
        return model

    def _generate_evaluation_specification(self):
        """Optimize acquisition on fantasy model to pick next point."""
        fantasy_model = self._create_fantasy_model(self.model)
        fantasy_model.eval()

        # find next configuration by optimizing the acquisition function
        af = self.acquisition_function_factory(fantasy_model)
        if getattr(af, "maximize", False):
            raise ValueError(
                "Only acquisition functions that need to be minimized are supported. "
                f"The given {af.__class__.__name__} has maximize=True. "
                "One potential fix is using functools.partial("
                f"{af.__class__.__name__}, maximize=False) as the "
                "acquisition_function_factory init argument."
            )

        # numerical representation always lives on hypercube
        bounds = torch.tensor([[0, 1]] * len(self.search_space)).float().T

        configuration, _ = optimize_acqf(
            af,
            bounds=bounds,
            q=1,
            **self.af_opt_kwargs,
        )

        return EvaluationSpecification(
            configuration=self.search_space.from_numerical(configuration[0]),
        )

    def generate_evaluation_specification(self) -> EvaluationSpecification:
        """Call the optimizer specific function and append a unique integer id
        to the specification.

        Please refer to the docstring of
        `blackboxopt.base.SingleObjectiveOptimizer.generate_evaluation_specification`
        for a description of the method.
        """
        if (
            self.max_pending_evaluations
            and len(self.pending_specifications) == self.max_pending_evaluations
        ):
            raise OptimizerNotReady

        if self.num_initial_random > 0 and (
            self.X.size(-2) < self.num_initial_random
            or torch.nonzero(~torch.any(self.losses.isnan(), dim=1)).numel() == 0
        ):
            # We keep generating random samples until there are enough samples, and
            # at least one of them has a valid objective
            eval_spec = EvaluationSpecification(
                configuration=self.search_space.sample(),
            )
        else:
            eval_spec = self._generate_evaluation_specification()

        eval_id = self.X.size(-2) + len(self.pending_specifications)
        eval_spec.optimizer_info["evaluation_id"] = eval_id
        self.pending_specifications[eval_id] = eval_spec
        return eval_spec

    def _remove_pending_specifications(
        self, evaluations: Union[Evaluation, Iterable[Evaluation]]
    ):
        """Find and remove the corresponding entries in `self.pending_specifications`.

        Args:
            evaluations: List of completed evaluations.
        Raises:
            ValueError: If an evaluation is reported with an ID that was not issued
            by the optimizer, the method will fail.
        """
        _evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations

        for e in _evals:
            if "evaluation_id" not in e.optimizer_info:
                self.logger.debug("User provided EvaluationSpecification received.")
                continue

            if e.optimizer_info["evaluation_id"] not in self.pending_specifications:
                msg = (
                    "Unknown evaluation_id reported. This could indicate that the "
                    "evaluation has been reported before!"
                )
                self.logger.error(msg)
                raise ValueError(msg)

            del self.pending_specifications[e.optimizer_info["evaluation_id"]]

    def _append_evaluations_to_data(
        self, evaluations: Union[Evaluation, Iterable[Evaluation]]
    ):
        """Convert the reported evaluation into its numerical representation
        and append it to the training data.

        Args:
            evaluations: List of completed evaluations.
        """
        _evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations

        X, Y = to_numerical(
            _evals,
            self.search_space,
            self.objective,
            self.batch_shape,
            self.torch_dtype,
        )

        # fill in NaNs originating from inactive parameters (conditional spaces support)
        # botorch expect numerical representation of inputs to be within the unit
        # hypercube, thus we can't use the default c=-1.0
        X = impute_nans_with_constant(X, c=0.0)

        self.logger.debug(f"Next training configuration(s):{X}, {Y}")

        self.X = torch.cat([self.X, X], dim=-2)
        self.losses = torch.cat([self.losses, Y], dim=-2)

    def _update_internal_evaluation_data(
        self, evaluations: Iterable[Evaluation]
    ) -> None:
        """Check validity of the evaluations and do optimizer agnostic bookkeeping."""
        call_functions_with_evaluations_and_collect_errors(
            [
                functools.partial(validate_objectives, objectives=[self.objective]),
                self._remove_pending_specifications,
                self._append_evaluations_to_data,
            ],
            sort_evaluations(evaluations),
        )

    def report(self, evaluations: Union[Evaluation, Iterable[Evaluation]]) -> None:
        """A simple report method that conditions the model on data.
        This likely needs to be overridden for more specific BO implementations.
        """
        _evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations
        self._update_internal_evaluation_data(_evals)
        # Just for populating all relevant caches
        self.model.posterior(self.X)
        # The actual model update
        self.model.condition_on_observations(self.X, self.losses)

    def predict_model_based_best(self) -> Optional[Evaluation]:
        """Get the current configuration that is estimated to be the best (in terms of
        optimal objective value) without waiting for a reported evaluation of that
        configuration. Instead, the objective value estimation relies on BO's
        underlying model.

        This might return `None` in case there is no successfully evaluated
        configuration yet (thus, the optimizer has not been given training data yet).

        Returns:
            blackboxopt.evaluation.Evaluation
                The evaluated specification containing the estimated best configuration
                or `None` in case no evaluations have been reported yet.
        """
        if self.model.train_inputs[0].numel() == 0:
            return None

        def posterior_mean(x):
            # function to be optimized: posterior mean
            # scipy's minimize expects the following interface:
            #  - input: 1-D array with shape (n,)
            #  - output: float
            mean = self.model.posterior(torch.from_numpy(np.atleast_2d(x))).mean
            return mean.item()

        # prepare initial random samples and bounds for scipy's minimize
        n_init_samples = 10
        init_points = np.asarray(
            [
                self.search_space.to_numerical(self.search_space.sample())
                for _ in range(n_init_samples)
            ]
        )
        bounds = self.search_space.get_continuous_bounds()

        # use scipy's minimize to find optimum of the posterior mean
        optimized_points = [
            sci_opt.minimize(
                fun=posterior_mean,
                constraints=None,
                jac=False,
                x0=x,
                args=(),
                bounds=bounds,
                method="L-BFGS-B",
                options=None,
            )
            for x in init_points
        ]

        f_optimized = np.array(
            [np.atleast_1d(p.fun) for p in optimized_points]
        ).flatten()
        # get indexes of optimum value (with a tolerance)
        inds = np.argwhere(np.isclose(f_optimized, np.min(f_optimized)))
        # randomly select one index if there are multiple
        ind = np.random.choice(inds.flatten())

        # create Evaluation from the best estimated configuration
        best_x = optimized_points[ind].x
        best_y = posterior_mean(best_x)
        return Evaluation(
            configuration=self.search_space.from_numerical(best_x),
            objectives={
                self.objective.name: -1 * best_y
                if self.objective.greater_is_better
                else best_y
            },
        )

generate_evaluation_specification(self)

Call the optimizer specific function and append a unique integer id to the specification.

Please refer to the docstring of blackboxopt.base.SingleObjectiveOptimizer.generate_evaluation_specification for a description of the method.

Source code in blackboxopt/optimizers/botorch_base.py
def generate_evaluation_specification(self) -> EvaluationSpecification:
    """Call the optimizer specific function and append a unique integer id
    to the specification.

    Please refer to the docstring of
    `blackboxopt.base.SingleObjectiveOptimizer.generate_evaluation_specification`
    for a description of the method.
    """
    if (
        self.max_pending_evaluations
        and len(self.pending_specifications) == self.max_pending_evaluations
    ):
        raise OptimizerNotReady

    if self.num_initial_random > 0 and (
        self.X.size(-2) < self.num_initial_random
        or torch.nonzero(~torch.any(self.losses.isnan(), dim=1)).numel() == 0
    ):
        # We keep generating random samples until there are enough samples, and
        # at least one of them has a valid objective
        eval_spec = EvaluationSpecification(
            configuration=self.search_space.sample(),
        )
    else:
        eval_spec = self._generate_evaluation_specification()

    eval_id = self.X.size(-2) + len(self.pending_specifications)
    eval_spec.optimizer_info["evaluation_id"] = eval_id
    self.pending_specifications[eval_id] = eval_spec
    return eval_spec

predict_model_based_best(self)

Get the current configuration that is estimated to be the best (in terms of optimal objective value) without waiting for a reported evaluation of that configuration. Instead, the objective value estimation relies on BO's underlying model.

This might return None in case there is no successfully evaluated configuration yet (thus, the optimizer has not been given training data yet).

Returns:

Type Description
Optional[blackboxopt.evaluation.Evaluation]

blackboxopt.evaluation.Evaluation The evaluated specification containing the estimated best configuration or None in case no evaluations have been reported yet.

Source code in blackboxopt/optimizers/botorch_base.py
def predict_model_based_best(self) -> Optional[Evaluation]:
    """Get the current configuration that is estimated to be the best (in terms of
    optimal objective value) without waiting for a reported evaluation of that
    configuration. Instead, the objective value estimation relies on BO's
    underlying model.

    This might return `None` in case there is no successfully evaluated
    configuration yet (thus, the optimizer has not been given training data yet).

    Returns:
        blackboxopt.evaluation.Evaluation
            The evaluated specification containing the estimated best configuration
            or `None` in case no evaluations have been reported yet.
    """
    if self.model.train_inputs[0].numel() == 0:
        return None

    def posterior_mean(x):
        # function to be optimized: posterior mean
        # scipy's minimize expects the following interface:
        #  - input: 1-D array with shape (n,)
        #  - output: float
        mean = self.model.posterior(torch.from_numpy(np.atleast_2d(x))).mean
        return mean.item()

    # prepare initial random samples and bounds for scipy's minimize
    n_init_samples = 10
    init_points = np.asarray(
        [
            self.search_space.to_numerical(self.search_space.sample())
            for _ in range(n_init_samples)
        ]
    )
    bounds = self.search_space.get_continuous_bounds()

    # use scipy's minimize to find optimum of the posterior mean
    optimized_points = [
        sci_opt.minimize(
            fun=posterior_mean,
            constraints=None,
            jac=False,
            x0=x,
            args=(),
            bounds=bounds,
            method="L-BFGS-B",
            options=None,
        )
        for x in init_points
    ]

    f_optimized = np.array(
        [np.atleast_1d(p.fun) for p in optimized_points]
    ).flatten()
    # get indexes of optimum value (with a tolerance)
    inds = np.argwhere(np.isclose(f_optimized, np.min(f_optimized)))
    # randomly select one index if there are multiple
    ind = np.random.choice(inds.flatten())

    # create Evaluation from the best estimated configuration
    best_x = optimized_points[ind].x
    best_y = posterior_mean(best_x)
    return Evaluation(
        configuration=self.search_space.from_numerical(best_x),
        objectives={
            self.objective.name: -1 * best_y
            if self.objective.greater_is_better
            else best_y
        },
    )

report(self, evaluations)

A simple report method that conditions the model on data. This likely needs to be overridden for more specific BO implementations.

Source code in blackboxopt/optimizers/botorch_base.py
def report(self, evaluations: Union[Evaluation, Iterable[Evaluation]]) -> None:
    """A simple report method that conditions the model on data.
    This likely needs to be overridden for more specific BO implementations.
    """
    _evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations
    self._update_internal_evaluation_data(_evals)
    # Just for populating all relevant caches
    self.model.posterior(self.X)
    # The actual model update
    self.model.condition_on_observations(self.X, self.losses)

impute_nans_with_constant(x, c=-1.0)

Impute NaN values with given constant value.

Parameters:

Name Type Description Default
x Tensor

Input tensor of shape n x d or b x n x d.

required
c float

Constant used as fill value to replace NaNs.

-1.0

Returns:

Type Description
Tensor
  • x_i - x where all NaNs are replaced with given constant.
Source code in blackboxopt/optimizers/botorch_base.py
def impute_nans_with_constant(x: torch.Tensor, c: float = -1.0) -> torch.Tensor:
    """Impute `NaN` values with given constant value.

    Args:
        x: Input tensor of shape `n x d` or `b x n x d`.
        c: Constant used as fill value to replace `NaNs`.

    Returns:
        - x_i - `x` where all `NaN`s are replaced with given constant.
    """
    if x.numel() == 0:  # empty tensor, nothing to impute
        return x
    x_i = x.clone()

    # cast n x d to 1 x n x d (cover non-batch case)
    if len(x.shape) == 2:
        x_i = x_i.reshape(torch.Size((1,)) + x_i.shape)

    for b in range(x_i.shape[0]):
        x_1 = x_i[b, :, :]
        x_1 = torch.tensor(
            SimpleImputer(
                missing_values=np.nan, strategy="constant", fill_value=c
            ).fit_transform(x_1),
            dtype=x.dtype,
        )
        x_i[b, :, :] = x_1

    # cast 1 x n x d back to n x d if originally non-batch
    if len(x.shape) == 2:
        x_i = x_i.reshape(x.shape)
    return x_i

init_af_opt_kwargs(af_opt_kwargs)

Provide default initialization for the acquisition function optimizer configuration. Ensure that all mandatory fields are set to be used by BoTorch.

Parameters:

Name Type Description Default
af_opt_kwargs Optional[dict]

Acquisition function configuration.

required

Returns:

Type Description
dict

Acquisition function optimizer configuration, applicable for BoTorch's optimizer.

Source code in blackboxopt/optimizers/botorch_base.py
def init_af_opt_kwargs(af_opt_kwargs: Optional[dict]) -> dict:
    """Provide default initialization for the acquisition function optimizer
    configuration. Ensure that all mandatory fields are set to be used by BoTorch.

    Args:
        af_opt_kwargs: Acquisition function configuration.

    Returns:
        Acquisition function optimizer configuration, applicable for BoTorch's
            optimizer.
    """

    af_opt_config = {} if af_opt_kwargs is None else af_opt_kwargs

    # number of initial samples during AF optimization
    af_opt_config.setdefault("raw_samples", 1024)

    # number of restarts during AF optimization
    af_opt_config.setdefault("num_restarts", 4)

    return af_opt_config

to_numerical(evaluations, search_space, objective, batch_shape=torch.Size([]), torch_dtype=torch.float32)

Convert evaluations to one (#batch, #evaluations, #parameters) tensor containing the numerical representations of the configurations and one (#batch, #evaluations, 1) tensor containing the loss representation of the evaluations' objective value (flips the sign for objective value if objective.greater_is_better=True).

Parameters:

Name Type Description Default
evaluations Iterable[blackboxopt.evaluation.Evaluation]

List of evaluations that were collected during optimization.

required
search_space ParameterSpace

Search space used during optimization.

required
objective Objective

Objective that was used for optimization.

required
batch_shape Size

Batch dimension(s) used for batched models.

torch.Size([])
torch_dtype dtype

Type of returned tensors.

torch.float32

Returns:

Type Description
- X

Numerical representation of the configurations - Y: Numerical representation of the objective values

Exceptions:

Type Description
ValueError

If one of configurations is not valid w.r.t. search space.

ValueError

If one of configurations includes parameters that are not part of the search space.

Source code in blackboxopt/optimizers/botorch_base.py
def to_numerical(
    evaluations: Iterable[Evaluation],
    search_space: ps.ParameterSpace,
    objective: Objective,
    batch_shape: torch.Size = torch.Size(),
    torch_dtype: torch.dtype = torch.float32,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Convert evaluations to one `(#batch, #evaluations, #parameters)` tensor
    containing the numerical representations of the configurations and
    one `(#batch, #evaluations, 1)` tensor containing the loss representation of
    the evaluations' objective value (flips the sign for objective value
    if `objective.greater_is_better=True`).

    Args:
        evaluations: List of evaluations that were collected during optimization.
        search_space: Search space used during optimization.
        objective: Objective that was used for optimization.
        batch_shape: Batch dimension(s) used for batched models.
        torch_dtype: Type of returned tensors.

    Returns:
        - X: Numerical representation of the configurations
        - Y: Numerical representation of the objective values

    Raises:
        ValueError: If one of configurations is not valid w.r.t. search space.
        ValueError: If one of configurations includes parameters that are not part of
            the search space.
    """
    # validate configuration values and dimensions
    parameter_names = search_space.get_parameter_names() + list(
        search_space.get_constant_names()
    )
    for e in evaluations:
        with warnings.catch_warnings():
            # we already raise error if search space not valid, thus can ignore warnings
            warnings.filterwarnings(
                "ignore", category=RuntimeWarning, message="Parameter"
            )
            if not search_space.check_validity(e.configuration):
                raise ValueError(
                    f"The provided configuration {e.configuration} is not valid."
                )
        if not set(parameter_names) >= set(e.configuration.keys()):
            raise ValueError(
                f"Mismatch in parameter names from search space {parameter_names} and "
                + f"configuration {e.configuration}"
            )

    X = torch.tensor(
        np.array([search_space.to_numerical(e.configuration) for e in evaluations]),
        dtype=torch_dtype,
    )
    X = X.reshape(*batch_shape + X.shape)
    Y = torch.tensor(
        np.array([[e.objectives[objective.name]] for e in evaluations], dtype=float),
        dtype=torch_dtype,
    )
    Y = Y.reshape(*batch_shape + Y.shape)

    if objective.greater_is_better:
        Y *= -1

    return X, Y