blackboxopt.optimizers.botorch_base
SingleObjectiveBOTorchOptimizer (SingleObjectiveOptimizer)
Source code in blackboxopt/optimizers/botorch_base.py
class SingleObjectiveBOTorchOptimizer(SingleObjectiveOptimizer):
def __init__(
self,
search_space: ps.ParameterSpace,
objective: Objective,
model: Model,
acquisition_function_factory: Callable[[Model], AcquisitionFunction],
af_optimizer_kwargs=None,
num_initial_random_samples: int = 1,
max_pending_evaluations: Optional[int] = 1,
batch_shape: torch.Size = torch.Size(),
logger: Optional[logging.Logger] = None,
seed: Optional[int] = None,
torch_dtype: torch.dtype = torch.float64,
):
"""Single objective BO optimizer that uses as a surrogate model the `model`
object provided by user.
The `model` is expected to be extended from BoTorch base model `Model` class,
and does not require to be a GP model.
Args:
search_space: The space in which to optimize.
objective: The objective to optimize.
model: Surrogate model of `Model` type.
acquisition_function_factory: Callable that produces an acquisition function
instance, could also be a compatible acquisition function class.
Only acquisition functions to be minimized are supported.
Providing a partially initialized class is possible with, e.g.
`functools.partial(UpperConfidenceBound, beta=6.0, maximize=False)`.
af_optimizer_kwargs: Settings for acquisition function optimizer,
see `botorch.optim.optimize_acqf`.
num_initial_random_samples: Size of the initial space-filling design that
is used before starting BO. The points are sampled randomly in the
search space. If no random sampling is required, set it to 0.
max_pending_evaluations: Maximum number of parallel evaluations. For
sequential BO use the default value of 1. If no limit is required,
set it to None.
batch_shape: Batch dimension(s) used for batched models.
logger: Custom logger.
seed: A seed to make the optimization reproducible.
torch_dtype: Torch data type used for storing the data. This needs to match
the dtype of the model used
"""
super().__init__(search_space=search_space, objective=objective, seed=seed)
self.num_initial_random = num_initial_random_samples
self.max_pending_evaluations = max_pending_evaluations
self.batch_shape = batch_shape
self.logger = logger or logging.getLogger("blackboxopt")
self.torch_dtype = torch_dtype
self.X = torch.empty(
(*self.batch_shape, 0, len(search_space)), dtype=torch_dtype
)
self.losses = torch.empty((*self.batch_shape, 0, 1), dtype=torch_dtype)
self.pending_specifications: Dict[int, EvaluationSpecification] = {}
if seed is not None:
torch.manual_seed(seed=seed)
self.model = model
self.acquisition_function_factory = acquisition_function_factory
self.af_opt_kwargs = init_af_opt_kwargs(af_optimizer_kwargs)
def _create_fantasy_model(self, model: Model) -> Model:
"""Create model with the pending specifications and model based
outcomes added to the training data."""
if not self.pending_specifications:
# nothing to do when there are no pending specs
return model
pending_X = torch.tensor(
np.array(
[
self.search_space.to_numerical(e.configuration)
for e in self.pending_specifications.values()
]
),
dtype=self.torch_dtype,
)
model = model.fantasize(pending_X, IIDNormalSampler(1), observation_noise=False)
if isinstance(model, ExactGP):
# ExactGP.fantasize extends model's X and Y with batch_size, even if
# originally not given -> need to reshape these to their original
# representation
n_samples = model.train_targets.size(-1)
n_features = len(self.search_space)
model.train_inputs[0] = model.train_inputs[0].reshape(
torch.Size((*self.batch_shape, n_samples, n_features))
)
model.train_targets = model.train_targets.reshape(
torch.Size((*self.batch_shape, n_samples, 1))
)
return model
def _generate_evaluation_specification(self):
"""Optimize acquisition on fantasy model to pick next point."""
fantasy_model = self._create_fantasy_model(self.model)
fantasy_model.eval()
# find next configuration by optimizing the acquisition function
af = self.acquisition_function_factory(fantasy_model)
if getattr(af, "maximize", False):
raise ValueError(
"Only acquisition functions that need to be minimized are supported. "
f"The given {af.__class__.__name__} has maximize=True. "
"One potential fix is using functools.partial("
f"{af.__class__.__name__}, maximize=False) as the "
"acquisition_function_factory init argument."
)
# numerical representation always lives on hypercube
bounds = torch.tensor(
[[0, 1]] * len(self.search_space), dtype=self.torch_dtype
).T
configuration, _ = optimize_acqf(
af,
bounds=bounds,
q=1,
**self.af_opt_kwargs,
)
return EvaluationSpecification(
configuration=self.search_space.from_numerical(configuration[0]),
)
def generate_evaluation_specification(self) -> EvaluationSpecification:
"""Call the optimizer specific function and append a unique integer id
to the specification.
Please refer to the docstring of
`blackboxopt.base.SingleObjectiveOptimizer.generate_evaluation_specification`
for a description of the method.
"""
if (
self.max_pending_evaluations
and len(self.pending_specifications) == self.max_pending_evaluations
):
raise OptimizerNotReady
if self.num_initial_random > 0 and (
self.X.size(-2) < self.num_initial_random
or torch.nonzero(~torch.any(self.losses.isnan(), dim=1)).numel() == 0
):
# We keep generating random samples until there are enough samples, and
# at least one of them has a valid objective
eval_spec = EvaluationSpecification(
configuration=self.search_space.sample(),
)
else:
eval_spec = self._generate_evaluation_specification()
eval_id = self.X.size(-2) + len(self.pending_specifications)
eval_spec.optimizer_info["evaluation_id"] = eval_id
self.pending_specifications[eval_id] = eval_spec
return eval_spec
def _remove_pending_specifications(
self, evaluations: Union[Evaluation, Iterable[Evaluation]]
):
"""Find and remove the corresponding entries in `self.pending_specifications`.
Args:
evaluations: List of completed evaluations.
Raises:
ValueError: If an evaluation is reported with an ID that was not issued
by the optimizer, the method will fail.
"""
_evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations
for e in _evals:
if "evaluation_id" not in e.optimizer_info:
self.logger.debug("User provided EvaluationSpecification received.")
continue
if e.optimizer_info["evaluation_id"] not in self.pending_specifications:
msg = (
"Unknown evaluation_id reported. This could indicate that the "
"evaluation has been reported before!"
)
self.logger.error(msg)
raise ValueError(msg)
del self.pending_specifications[e.optimizer_info["evaluation_id"]]
def _append_evaluations_to_data(
self, evaluations: Union[Evaluation, Iterable[Evaluation]]
):
"""Convert the reported evaluation into its numerical representation
and append it to the training data.
Args:
evaluations: List of completed evaluations.
"""
_evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations
X, Y = to_numerical(
_evals,
self.search_space,
self.objective,
batch_shape=self.batch_shape,
torch_dtype=self.torch_dtype,
)
# fill in NaNs originating from inactive parameters (conditional spaces support)
# botorch expect numerical representation of inputs to be within the unit
# hypercube, thus we can't use the default c=-1.0
X = impute_nans_with_constant(X, c=0.0)
self.logger.debug(f"Next training configuration(s):{X}, {Y}")
self.X = torch.cat([self.X, X], dim=-2)
self.losses = torch.cat([self.losses, Y], dim=-2)
def _update_internal_evaluation_data(
self, evaluations: Iterable[Evaluation]
) -> None:
"""Check validity of the evaluations and do optimizer agnostic bookkeeping."""
call_functions_with_evaluations_and_collect_errors(
[
functools.partial(validate_objectives, objectives=[self.objective]),
self._remove_pending_specifications,
self._append_evaluations_to_data,
],
sort_evaluations(evaluations),
)
def report(self, evaluations: Union[Evaluation, Iterable[Evaluation]]) -> None:
"""A simple report method that conditions the model on data.
This likely needs to be overridden for more specific BO implementations.
"""
_evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations
self._update_internal_evaluation_data(_evals)
# Just for populating all relevant caches
self.model.posterior(self.X)
# The actual model update
self.model.condition_on_observations(self.X, self.losses)
def predict_model_based_best(self) -> Optional[Evaluation]:
"""Get the current configuration that is estimated to be the best (in terms of
optimal objective value) without waiting for a reported evaluation of that
configuration. Instead, the objective value estimation relies on BO's
underlying model.
This might return `None` in case there is no successfully evaluated
configuration yet (thus, the optimizer has not been given training data yet).
Returns:
blackboxopt.evaluation.Evaluation
The evaluated specification containing the estimated best configuration
or `None` in case no evaluations have been reported yet.
"""
if self.model.train_inputs[0].numel() == 0:
return None
def posterior_mean(x):
# function to be optimized: posterior mean
# scipy's minimize expects the following interface:
# - input: 1-D array with shape (n,)
# - output: float
mean = self.model.posterior(torch.from_numpy(np.atleast_2d(x))).mean
return mean.item()
# prepare initial random samples and bounds for scipy's minimize
n_init_samples = 10
init_points = np.asarray(
[
self.search_space.to_numerical(self.search_space.sample())
for _ in range(n_init_samples)
]
)
bounds = self.search_space.get_continuous_bounds()
# use scipy's minimize to find optimum of the posterior mean
optimized_points = [
sci_opt.minimize(
fun=posterior_mean,
constraints=None,
jac=False,
x0=x,
args=(),
bounds=bounds,
method="L-BFGS-B",
options=None,
)
for x in init_points
]
f_optimized = np.array(
[np.atleast_1d(p.fun) for p in optimized_points]
).flatten()
# get indexes of optimum value (with a tolerance)
inds = np.argwhere(np.isclose(f_optimized, np.min(f_optimized)))
# randomly select one index if there are multiple
ind = np.random.choice(inds.flatten())
# create Evaluation from the best estimated configuration
best_x = optimized_points[ind].x
best_y = posterior_mean(best_x)
return Evaluation(
configuration=self.search_space.from_numerical(best_x),
objectives={
self.objective.name: -1 * best_y
if self.objective.greater_is_better
else best_y
},
)
generate_evaluation_specification(self)
Call the optimizer specific function and append a unique integer id to the specification.
Please refer to the docstring of
blackboxopt.base.SingleObjectiveOptimizer.generate_evaluation_specification
for a description of the method.
Source code in blackboxopt/optimizers/botorch_base.py
def generate_evaluation_specification(self) -> EvaluationSpecification:
"""Call the optimizer specific function and append a unique integer id
to the specification.
Please refer to the docstring of
`blackboxopt.base.SingleObjectiveOptimizer.generate_evaluation_specification`
for a description of the method.
"""
if (
self.max_pending_evaluations
and len(self.pending_specifications) == self.max_pending_evaluations
):
raise OptimizerNotReady
if self.num_initial_random > 0 and (
self.X.size(-2) < self.num_initial_random
or torch.nonzero(~torch.any(self.losses.isnan(), dim=1)).numel() == 0
):
# We keep generating random samples until there are enough samples, and
# at least one of them has a valid objective
eval_spec = EvaluationSpecification(
configuration=self.search_space.sample(),
)
else:
eval_spec = self._generate_evaluation_specification()
eval_id = self.X.size(-2) + len(self.pending_specifications)
eval_spec.optimizer_info["evaluation_id"] = eval_id
self.pending_specifications[eval_id] = eval_spec
return eval_spec
predict_model_based_best(self)
Get the current configuration that is estimated to be the best (in terms of optimal objective value) without waiting for a reported evaluation of that configuration. Instead, the objective value estimation relies on BO's underlying model.
This might return None
in case there is no successfully evaluated
configuration yet (thus, the optimizer has not been given training data yet).
Returns:
Type | Description |
---|---|
Optional[blackboxopt.evaluation.Evaluation] |
blackboxopt.evaluation.Evaluation
The evaluated specification containing the estimated best configuration
or |
Source code in blackboxopt/optimizers/botorch_base.py
def predict_model_based_best(self) -> Optional[Evaluation]:
"""Get the current configuration that is estimated to be the best (in terms of
optimal objective value) without waiting for a reported evaluation of that
configuration. Instead, the objective value estimation relies on BO's
underlying model.
This might return `None` in case there is no successfully evaluated
configuration yet (thus, the optimizer has not been given training data yet).
Returns:
blackboxopt.evaluation.Evaluation
The evaluated specification containing the estimated best configuration
or `None` in case no evaluations have been reported yet.
"""
if self.model.train_inputs[0].numel() == 0:
return None
def posterior_mean(x):
# function to be optimized: posterior mean
# scipy's minimize expects the following interface:
# - input: 1-D array with shape (n,)
# - output: float
mean = self.model.posterior(torch.from_numpy(np.atleast_2d(x))).mean
return mean.item()
# prepare initial random samples and bounds for scipy's minimize
n_init_samples = 10
init_points = np.asarray(
[
self.search_space.to_numerical(self.search_space.sample())
for _ in range(n_init_samples)
]
)
bounds = self.search_space.get_continuous_bounds()
# use scipy's minimize to find optimum of the posterior mean
optimized_points = [
sci_opt.minimize(
fun=posterior_mean,
constraints=None,
jac=False,
x0=x,
args=(),
bounds=bounds,
method="L-BFGS-B",
options=None,
)
for x in init_points
]
f_optimized = np.array(
[np.atleast_1d(p.fun) for p in optimized_points]
).flatten()
# get indexes of optimum value (with a tolerance)
inds = np.argwhere(np.isclose(f_optimized, np.min(f_optimized)))
# randomly select one index if there are multiple
ind = np.random.choice(inds.flatten())
# create Evaluation from the best estimated configuration
best_x = optimized_points[ind].x
best_y = posterior_mean(best_x)
return Evaluation(
configuration=self.search_space.from_numerical(best_x),
objectives={
self.objective.name: -1 * best_y
if self.objective.greater_is_better
else best_y
},
)
report(self, evaluations)
A simple report method that conditions the model on data. This likely needs to be overridden for more specific BO implementations.
Source code in blackboxopt/optimizers/botorch_base.py
def report(self, evaluations: Union[Evaluation, Iterable[Evaluation]]) -> None:
"""A simple report method that conditions the model on data.
This likely needs to be overridden for more specific BO implementations.
"""
_evals = [evaluations] if isinstance(evaluations, Evaluation) else evaluations
self._update_internal_evaluation_data(_evals)
# Just for populating all relevant caches
self.model.posterior(self.X)
# The actual model update
self.model.condition_on_observations(self.X, self.losses)
impute_nans_with_constant(x, c=-1.0)
Impute NaN
values with given constant value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Tensor |
Input tensor of shape |
required |
c |
float |
Constant used as fill value to replace |
-1.0 |
Returns:
Type | Description |
---|---|
Tensor |
|
Source code in blackboxopt/optimizers/botorch_base.py
def impute_nans_with_constant(x: torch.Tensor, c: float = -1.0) -> torch.Tensor:
"""Impute `NaN` values with given constant value.
Args:
x: Input tensor of shape `n x d` or `b x n x d`.
c: Constant used as fill value to replace `NaNs`.
Returns:
- x_i - `x` where all `NaN`s are replaced with given constant.
"""
if x.numel() == 0: # empty tensor, nothing to impute
return x
x_i = x.clone()
# cast n x d to 1 x n x d (cover non-batch case)
if len(x.shape) == 2:
x_i = x_i.reshape(torch.Size((1,)) + x_i.shape)
for b in range(x_i.shape[0]):
x_1 = x_i[b, :, :]
x_1 = torch.tensor(
SimpleImputer(
missing_values=np.nan, strategy="constant", fill_value=c
).fit_transform(x_1),
dtype=x.dtype,
)
x_i[b, :, :] = x_1
# cast 1 x n x d back to n x d if originally non-batch
if len(x.shape) == 2:
x_i = x_i.reshape(x.shape)
return x_i
init_af_opt_kwargs(af_opt_kwargs)
Provide default initialization for the acquisition function optimizer configuration. Ensure that all mandatory fields are set to be used by BoTorch.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
af_opt_kwargs |
Optional[dict] |
Acquisition function configuration. |
required |
Returns:
Type | Description |
---|---|
dict |
Acquisition function optimizer configuration, applicable for BoTorch's optimizer. |
Source code in blackboxopt/optimizers/botorch_base.py
def init_af_opt_kwargs(af_opt_kwargs: Optional[dict]) -> dict:
"""Provide default initialization for the acquisition function optimizer
configuration. Ensure that all mandatory fields are set to be used by BoTorch.
Args:
af_opt_kwargs: Acquisition function configuration.
Returns:
Acquisition function optimizer configuration, applicable for BoTorch's
optimizer.
"""
af_opt_config = {} if af_opt_kwargs is None else af_opt_kwargs
# number of initial samples during AF optimization
af_opt_config.setdefault("raw_samples", 1024)
# number of restarts during AF optimization
af_opt_config.setdefault("num_restarts", 4)
return af_opt_config
to_numerical(evaluations, search_space, objective, constraint_names=None, batch_shape=torch.Size([]), torch_dtype=torch.float32)
Convert evaluations to one (#batch, #evaluations, #parameters)
tensor
containing the numerical representations of the configurations and
one (#batch, #evaluations, 1)
tensor containing the loss representation of
the evaluations' objective value (flips the sign for objective value
if objective.greater_is_better=True
) and optionally constraints value.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
evaluations |
Iterable[blackboxopt.evaluation.Evaluation] |
List of evaluations that were collected during optimization. |
required |
search_space |
ParameterSpace |
Search space used during optimization. |
required |
objective |
Objective |
Objective that was used for optimization. |
required |
constraint_names |
Optional[List[str]] |
Name of constraints that are used for optimization. |
None |
batch_shape |
Size |
Batch dimension(s) used for batched models. |
torch.Size([]) |
torch_dtype |
dtype |
Type of returned tensors. |
torch.float32 |
Returns:
Type | Description |
---|---|
- X |
Numerical representation of the configurations - Y: Numerical representation of the objective values and optionally constraints |
Exceptions:
Type | Description |
---|---|
ValueError |
If one of configurations is not valid w.r.t. search space. |
ValueError |
If one of configurations includes parameters that are not part of the search space. |
ConstraintError |
If one of the constraint names is not defined in evaluations. |
Source code in blackboxopt/optimizers/botorch_base.py
def to_numerical(
evaluations: Iterable[Evaluation],
search_space: ps.ParameterSpace,
objective: Objective,
constraint_names: Optional[List[str]] = None,
batch_shape: torch.Size = torch.Size(),
torch_dtype: torch.dtype = torch.float32,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Convert evaluations to one `(#batch, #evaluations, #parameters)` tensor
containing the numerical representations of the configurations and
one `(#batch, #evaluations, 1)` tensor containing the loss representation of
the evaluations' objective value (flips the sign for objective value
if `objective.greater_is_better=True`) and optionally constraints value.
Args:
evaluations: List of evaluations that were collected during optimization.
search_space: Search space used during optimization.
objective: Objective that was used for optimization.
constraint_names: Name of constraints that are used for optimization.
batch_shape: Batch dimension(s) used for batched models.
torch_dtype: Type of returned tensors.
Returns:
- X: Numerical representation of the configurations
- Y: Numerical representation of the objective values and optionally constraints
Raises:
ValueError: If one of configurations is not valid w.r.t. search space.
ValueError: If one of configurations includes parameters that are not part of
the search space.
ConstraintError: If one of the constraint names is not defined in evaluations.
"""
# validate configuration values and dimensions
parameter_names = search_space.get_parameter_names() + list(
search_space.get_constant_names()
)
for e in evaluations:
with warnings.catch_warnings():
# we already raise error if search space not valid, thus can ignore warnings
warnings.filterwarnings(
"ignore", category=RuntimeWarning, message="Parameter"
)
if not search_space.check_validity(e.configuration):
raise ValueError(
f"The provided configuration {e.configuration} is not valid."
)
if not set(parameter_names) >= set(e.configuration.keys()):
raise ValueError(
f"Mismatch in parameter names from search space {parameter_names} and "
+ f"configuration {e.configuration}"
)
X = torch.tensor(
np.array([search_space.to_numerical(e.configuration) for e in evaluations]),
dtype=torch_dtype,
)
X = X.reshape(*batch_shape + X.shape)
Y = torch.tensor(
np.array([[e.objectives[objective.name]] for e in evaluations], dtype=float),
dtype=torch_dtype,
)
if objective.greater_is_better:
Y *= -1
if constraint_names is not None:
try:
Y_constraints = torch.tensor(
np.array(
[[e.constraints[c] for c in constraint_names] for e in evaluations],
dtype=float,
),
dtype=torch_dtype,
)
Y = torch.cat((Y, Y_constraints), dim=1)
except KeyError as e:
raise ConstraintsError(
f"Constraint name {e} is not defined in input evaluations."
)
except TypeError:
raise ConstraintsError(
f"Constraint name(s) {constraint_names} are not defined in input evaluations."
)
Y = Y.reshape(*batch_shape + Y.shape)
return X, Y