Random search
RandomSearch (MultiObjectiveOptimizer)
Source code in blackboxopt/optimizers/random_search.py
class RandomSearch(MultiObjectiveOptimizer):
def __init__(
self,
search_space: ParameterSpace,
objectives: List[Objective],
max_steps: int,
seed: int = None,
) -> None:
"""Randomly sample up to `max_steps` configurations from the given search space.
Args:
search_space: Space to search
objectives: The objectives of the optimization.
max_steps: Max number of evaluation specifications the optimizer generates
before raising `OptimizationComplete`
seed: Optional number to seed the random number generator with.
Defaults to None.
"""
super().__init__(search_space=search_space, objectives=objectives, seed=seed)
self.max_steps: int = max_steps
self.n_steps: int = 0
def generate_evaluation_specification(self) -> EvaluationSpecification:
"""[summary]
Raises:
OptimizationComplete: Raised if the optimizer's `max_steps` are reached.
Returns:
[description]
"""
if self.n_steps >= self.max_steps:
raise OptimizationComplete()
eval_spec = EvaluationSpecification(
configuration=self.search_space.sample(),
settings={},
optimizer_info={"step": self.n_steps},
)
self.n_steps += 1
return eval_spec
__init__(self, search_space, objectives, max_steps, seed=None)
special
Randomly sample up to max_steps
configurations from the given search space.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
search_space |
ParameterSpace |
Space to search |
required |
objectives |
List[blackboxopt.base.Objective] |
The objectives of the optimization. |
required |
max_steps |
int |
Max number of evaluation specifications the optimizer generates
before raising |
required |
seed |
int |
Optional number to seed the random number generator with. Defaults to None. |
None |
Source code in blackboxopt/optimizers/random_search.py
def __init__(
self,
search_space: ParameterSpace,
objectives: List[Objective],
max_steps: int,
seed: int = None,
) -> None:
"""Randomly sample up to `max_steps` configurations from the given search space.
Args:
search_space: Space to search
objectives: The objectives of the optimization.
max_steps: Max number of evaluation specifications the optimizer generates
before raising `OptimizationComplete`
seed: Optional number to seed the random number generator with.
Defaults to None.
"""
super().__init__(search_space=search_space, objectives=objectives, seed=seed)
self.max_steps: int = max_steps
self.n_steps: int = 0
generate_evaluation_specification(self)
[summary]
Exceptions:
Type | Description |
---|---|
OptimizationComplete |
Raised if the optimizer's |
Returns:
Type | Description |
---|---|
EvaluationSpecification |
[description] |
Source code in blackboxopt/optimizers/random_search.py
def generate_evaluation_specification(self) -> EvaluationSpecification:
"""[summary]
Raises:
OptimizationComplete: Raised if the optimizer's `max_steps` are reached.
Returns:
[description]
"""
if self.n_steps >= self.max_steps:
raise OptimizationComplete()
eval_spec = EvaluationSpecification(
configuration=self.search_space.sample(),
settings={},
optimizer_info={"step": self.n_steps},
)
self.n_steps += 1
return eval_spec