Skip to content

Random search

RandomSearch (MultiObjectiveOptimizer)

Source code in blackboxopt/optimizers/random_search.py
class RandomSearch(MultiObjectiveOptimizer):
    def __init__(
        self,
        search_space: ParameterSpace,
        objectives: List[Objective],
        max_steps: int,
        seed: int = None,
    ) -> None:
        """Randomly sample up to `max_steps` configurations from the given search space.

        Args:
            search_space: Space to search
            objectives: The objectives of the optimization.
            max_steps: Max number of evaluation specifications the optimizer generates
                before raising `OptimizationComplete`
            seed: Optional number to seed the random number generator with.
                Defaults to None.
        """
        super().__init__(search_space=search_space, objectives=objectives, seed=seed)

        self.max_steps: int = max_steps
        self.n_steps: int = 0

    def generate_evaluation_specification(self) -> EvaluationSpecification:
        """[summary]

        Raises:
            OptimizationComplete: Raised if the optimizer's `max_steps` are reached.

        Returns:
            [description]
        """
        if self.n_steps >= self.max_steps:
            raise OptimizationComplete()

        eval_spec = EvaluationSpecification(
            configuration=self.search_space.sample(),
            settings={},
            optimizer_info={"step": self.n_steps},
        )
        self.n_steps += 1

        return eval_spec

__init__(self, search_space, objectives, max_steps, seed=None) special

Randomly sample up to max_steps configurations from the given search space.

Parameters:

Name Type Description Default
search_space ParameterSpace

Space to search

required
objectives List[blackboxopt.base.Objective]

The objectives of the optimization.

required
max_steps int

Max number of evaluation specifications the optimizer generates before raising OptimizationComplete

required
seed int

Optional number to seed the random number generator with. Defaults to None.

None
Source code in blackboxopt/optimizers/random_search.py
def __init__(
    self,
    search_space: ParameterSpace,
    objectives: List[Objective],
    max_steps: int,
    seed: int = None,
) -> None:
    """Randomly sample up to `max_steps` configurations from the given search space.

    Args:
        search_space: Space to search
        objectives: The objectives of the optimization.
        max_steps: Max number of evaluation specifications the optimizer generates
            before raising `OptimizationComplete`
        seed: Optional number to seed the random number generator with.
            Defaults to None.
    """
    super().__init__(search_space=search_space, objectives=objectives, seed=seed)

    self.max_steps: int = max_steps
    self.n_steps: int = 0

generate_evaluation_specification(self)

[summary]

Exceptions:

Type Description
OptimizationComplete

Raised if the optimizer's max_steps are reached.

Returns:

Type Description
EvaluationSpecification

[description]

Source code in blackboxopt/optimizers/random_search.py
def generate_evaluation_specification(self) -> EvaluationSpecification:
    """[summary]

    Raises:
        OptimizationComplete: Raised if the optimizer's `max_steps` are reached.

    Returns:
        [description]
    """
    if self.n_steps >= self.max_steps:
        raise OptimizationComplete()

    eval_spec = EvaluationSpecification(
        configuration=self.search_space.sample(),
        settings={},
        optimizer_info={"step": self.n_steps},
    )
    self.n_steps += 1

    return eval_spec