parameterspace.transformations.zero_one
    
        
ZeroOneFloat            (BaseTransformation)
        
    Maps a bounded interval to [0, 1] via a linear transformation.
Source code in parameterspace/transformations/zero_one.py
          class ZeroOneFloat(BaseTransformation):
    """Maps a bounded interval to [0, 1] via a linear transformation."""
    @store_init_arguments
    def __init__(self, bounds: Optional[Tuple]):
        super().__init__(bounds, (0, 1))
        self.interval_size = bounds[1] - bounds[0]
    def inverse(self, numerical_value: float) -> float:
        return float(
            np.clip(
                self.input_bounds[0] + numerical_value * (self.interval_size),
                self.input_bounds[0],
                self.input_bounds[1],
            )
        )
    def __call__(self, value: Any) -> float:
        return float((value - self.input_bounds[0]) / self.interval_size)
    def __eq__(self, other):
        return np.allclose(self.input_bounds, other.input_bounds)
    def jacobian_factor(self, numerical_value: float) -> float:
        return 1.0 / self.interval_size
inverse(self, numerical_value)
    Convert the numerical representation back to the true value with the proper type.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
numerical_value | 
        float | 
        Transformed/Numerical representation of a value.  | 
        required | 
Returns:
| Type | Description | 
|---|---|
float | 
      The value corresponding to the given value. Type depends no the kind of transformation.  | 
    
Source code in parameterspace/transformations/zero_one.py
          def inverse(self, numerical_value: float) -> float:
    return float(
        np.clip(
            self.input_bounds[0] + numerical_value * (self.interval_size),
            self.input_bounds[0],
            self.input_bounds[1],
        )
    )
jacobian_factor(self, numerical_value)
    Factor to correct the likelihood based on the non-linear transformation.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
numerical_value | 
        float | 
        Transformed/Numerical representation of a value.  | 
        required | 
Returns:
| Type | Description | 
|---|---|
float | 
      Jacobian factor to properly transform the likelihood.  | 
    
Source code in parameterspace/transformations/zero_one.py
          def jacobian_factor(self, numerical_value: float) -> float:
    return 1.0 / self.interval_size
        
ZeroOneInteger            (BaseTransformation)
        
    Maps a bounded interval of integers to [0, 1] via a linear transformation.
Source code in parameterspace/transformations/zero_one.py
          class ZeroOneInteger(BaseTransformation):
    """Maps a bounded interval of integers to [0, 1] via a linear transformation."""
    @store_init_arguments
    def __init__(self, bounds: Optional[Tuple]):
        super().__init__(bounds, (0, 1))
        self.interval_size = bounds[1] - bounds[0] + 1
    def inverse(self, numerical_value: float) -> int:
        return int(
            np.clip(
                np.around(
                    self.input_bounds[0] - 0.5 + numerical_value * (self.interval_size)
                ),
                self.input_bounds[0],
                self.input_bounds[1],
            )
        )
    def __call__(self, value: Any) -> float:
        return float((value - self.input_bounds[0] + 0.5) / self.interval_size)
    def __eq__(self, other):
        return np.allclose(self.input_bounds, other.input_bounds)
    def jacobian_factor(self, numerical_value: float) -> float:
        return 1.0 / self.interval_size
inverse(self, numerical_value)
    Convert the numerical representation back to the true value with the proper type.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
numerical_value | 
        float | 
        Transformed/Numerical representation of a value.  | 
        required | 
Returns:
| Type | Description | 
|---|---|
int | 
      The value corresponding to the given value. Type depends no the kind of transformation.  | 
    
Source code in parameterspace/transformations/zero_one.py
          def inverse(self, numerical_value: float) -> int:
    return int(
        np.clip(
            np.around(
                self.input_bounds[0] - 0.5 + numerical_value * (self.interval_size)
            ),
            self.input_bounds[0],
            self.input_bounds[1],
        )
    )
jacobian_factor(self, numerical_value)
    Factor to correct the likelihood based on the non-linear transformation.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
numerical_value | 
        float | 
        Transformed/Numerical representation of a value.  | 
        required | 
Returns:
| Type | Description | 
|---|---|
float | 
      Jacobian factor to properly transform the likelihood.  | 
    
Source code in parameterspace/transformations/zero_one.py
          def jacobian_factor(self, numerical_value: float) -> float:
    return 1.0 / self.interval_size