Skip to content

Base

BaseParameter (ABC)

Base parameter class defining the API.

Source code in parameterspace/parameters/base.py
class BaseParameter(abc.ABC):
    """Base parameter class defining the API."""

    # pylint: disable-next=too-many-positional-arguments
    def __init__(
        self,
        name: str,
        prior: BasePrior,
        transformation: BaseTransformation,
        is_continuous: bool,
        is_ordered: bool,
        num_values: Union[int, float],
        inactive_numerical_value: Optional[float] = np.nan,
    ):
        """
        Initialize with options common to all parameters.

        Args:
            name: Name of the parameter.
            prior: Defines the pdf from which random samples are drawn. Default (`None`)
                corresponds to a uniform prior. Note that the prior's bounds must match
                the transformation's output bounds.
            transformation: Defines the transformation from the values to their
                numerical representation. Note that the transformation's output bounds
                must match the prior's bounds.
            is_continuous: Indicates whether this parameter varies continuously, i.e.
                is a `float`.
            is_ordered: Indicates whether this parameter has a natural ordering of it's
                values.
            num_values: Number of possible values. For ordinal, categorical, and integer
                parameters, this equals the number of unique values. For continuous
                parameters, it equals np.inf (even though technically there is only a
                finite number of float values).
            inactive_numerical_value: Placeholder value for this parameter in case it
                is not active
        """
        if not is_valid_python_variable_name(name):
            raise ValueError(f"{name} needs to be a valid Python variable name.")

        self.name = name
        self._prior = prior
        self._transformation = transformation
        self._inactive_numerical_value = inactive_numerical_value
        self.transformed_bounds = self._transformation.output_bounds

        self._init_args: Tuple
        self._init_kwargs: Dict

        assert np.allclose(self._prior.bounds, self.transformed_bounds, 1e-6), (
            f"Missmatch between the prior bounds ({self._prior.bounds})"
            + f"and the transformation's bounds ({self.transformed_bounds})!"
        )

        self.is_continuous = is_continuous
        self.is_ordered = is_ordered
        self.num_values = num_values

    def __repr__(self):
        """Basic info about a parameter common to all types."""
        string = f"Name: {self.name}\n"
        string += f"Type: {self.__class__}\n"
        string += f"Prior: {self._prior.__repr__()}\n"
        string += f"is continuous: {self.is_continuous}\n"
        string += f"is ordered: {self.is_ordered}\n"
        string += f"num_values: {self.num_values}\n"
        return string

    def sample_values(self, num_samples=None, random_state=np.random):
        """Generate randomly sampled values based on the prior."""
        numerical_samples = self.sample_numerical_values(num_samples, random_state)
        if num_samples is None:
            return self._transformation.inverse(numerical_samples)
        return [
            self._transformation.inverse(num_value) for num_value in numerical_samples
        ]

    def sample_numerical_values(self, num_samples=None, random_state=np.random):
        """Generate random values based on the prior, but in the transformed space."""
        return self._prior.sample(num_samples, random_state=random_state)

    def val2num(self, value):
        """Translate a value into its numerical representation (incl. normalization)."""
        if value is None:
            return self._inactive_numerical_value
        return self._transformation(value)

    def num2val(self, numerical_value):
        """Translate the numerical representation into the actual value."""
        return self._transformation.inverse(numerical_value)

    def check_numerical_value(self, numerical_value):
        """Check if the numerical representation of the value is valid."""
        return (
            self.transformed_bounds[0] <= numerical_value <= self.transformed_bounds[1]
        )

    def pdf_numerical_value(self, numerical_value):
        """Compute the PDF based on the prior."""
        return self._prior.pdf(numerical_value) * self._transformation.jacobian_factor(
            numerical_value
        )

    def loglikelihood_numerical_value(self, numerical_value):
        """Compute the loglikelihood based on the prior."""
        return self._prior.loglikelihood(numerical_value) + np.log(
            self._transformation.jacobian_factor(numerical_value)
        )

    def loglikelihood(self, value):
        """Compute the loglikelihood based on the prior."""
        return self.loglikelihood_numerical_value(self._transformation(value))

    def get_numerical_bounds(self):
        """Translate the provided bounds into the numerical representation."""
        return self.transformed_bounds

    @abc.abstractmethod
    def check_value(self, value):
        """Checks if value is valid."""

    @staticmethod
    def from_dict(json_dict):
        parameter_class = json_dict["class_name"]
        module_str, class_str = parameter_class.rsplit(".", 1)
        module = importlib.import_module(module_str)
        parameter_class = getattr(module, class_str)

        transformation = BaseTransformation.from_dict(json_dict["transformation"])
        prior = BasePrior.from_dict(json_dict["prior"])

        return parameter_class(
            *json_dict["init_args"],
            **json_dict["init_kwargs"],
            transformation=transformation,
            prior=prior,
        )

    def to_dict(self):
        json_dict = {
            "class_name": type(self).__module__ + "." + type(self).__qualname__,
            "init_args": self._init_args,
            "init_kwargs": copy.deepcopy(self._init_kwargs),
            "transformation": self._transformation.to_dict(),
            "prior": self._prior.to_dict(),
        }
        for key in ["transformation", "prior"]:
            if key in json_dict["init_kwargs"]:
                del json_dict["init_kwargs"][key]

        return json_dict

    def __eq__(self, other):
        if not isinstance(other, type(self)):
            return False
        if self.name != other.name:
            return False
        return (self._prior == other._prior) and (
            self._transformation == other._transformation
        )

__init__(self, name, prior, transformation, is_continuous, is_ordered, num_values, inactive_numerical_value=nan) special

Initialize with options common to all parameters.

Parameters:

Name Type Description Default
name str

Name of the parameter.

required
prior BasePrior

Defines the pdf from which random samples are drawn. Default (None) corresponds to a uniform prior. Note that the prior's bounds must match the transformation's output bounds.

required
transformation BaseTransformation

Defines the transformation from the values to their numerical representation. Note that the transformation's output bounds must match the prior's bounds.

required
is_continuous bool

Indicates whether this parameter varies continuously, i.e. is a float.

required
is_ordered bool

Indicates whether this parameter has a natural ordering of it's values.

required
num_values Union[int, float]

Number of possible values. For ordinal, categorical, and integer parameters, this equals the number of unique values. For continuous parameters, it equals np.inf (even though technically there is only a finite number of float values).

required
inactive_numerical_value Optional[float]

Placeholder value for this parameter in case it is not active

nan
Source code in parameterspace/parameters/base.py
def __init__(
    self,
    name: str,
    prior: BasePrior,
    transformation: BaseTransformation,
    is_continuous: bool,
    is_ordered: bool,
    num_values: Union[int, float],
    inactive_numerical_value: Optional[float] = np.nan,
):
    """
    Initialize with options common to all parameters.

    Args:
        name: Name of the parameter.
        prior: Defines the pdf from which random samples are drawn. Default (`None`)
            corresponds to a uniform prior. Note that the prior's bounds must match
            the transformation's output bounds.
        transformation: Defines the transformation from the values to their
            numerical representation. Note that the transformation's output bounds
            must match the prior's bounds.
        is_continuous: Indicates whether this parameter varies continuously, i.e.
            is a `float`.
        is_ordered: Indicates whether this parameter has a natural ordering of it's
            values.
        num_values: Number of possible values. For ordinal, categorical, and integer
            parameters, this equals the number of unique values. For continuous
            parameters, it equals np.inf (even though technically there is only a
            finite number of float values).
        inactive_numerical_value: Placeholder value for this parameter in case it
            is not active
    """
    if not is_valid_python_variable_name(name):
        raise ValueError(f"{name} needs to be a valid Python variable name.")

    self.name = name
    self._prior = prior
    self._transformation = transformation
    self._inactive_numerical_value = inactive_numerical_value
    self.transformed_bounds = self._transformation.output_bounds

    self._init_args: Tuple
    self._init_kwargs: Dict

    assert np.allclose(self._prior.bounds, self.transformed_bounds, 1e-6), (
        f"Missmatch between the prior bounds ({self._prior.bounds})"
        + f"and the transformation's bounds ({self.transformed_bounds})!"
    )

    self.is_continuous = is_continuous
    self.is_ordered = is_ordered
    self.num_values = num_values

__repr__(self) special

Basic info about a parameter common to all types.

Source code in parameterspace/parameters/base.py
def __repr__(self):
    """Basic info about a parameter common to all types."""
    string = f"Name: {self.name}\n"
    string += f"Type: {self.__class__}\n"
    string += f"Prior: {self._prior.__repr__()}\n"
    string += f"is continuous: {self.is_continuous}\n"
    string += f"is ordered: {self.is_ordered}\n"
    string += f"num_values: {self.num_values}\n"
    return string

check_numerical_value(self, numerical_value)

Check if the numerical representation of the value is valid.

Source code in parameterspace/parameters/base.py
def check_numerical_value(self, numerical_value):
    """Check if the numerical representation of the value is valid."""
    return (
        self.transformed_bounds[0] <= numerical_value <= self.transformed_bounds[1]
    )

check_value(self, value)

Checks if value is valid.

Source code in parameterspace/parameters/base.py
@abc.abstractmethod
def check_value(self, value):
    """Checks if value is valid."""

get_numerical_bounds(self)

Translate the provided bounds into the numerical representation.

Source code in parameterspace/parameters/base.py
def get_numerical_bounds(self):
    """Translate the provided bounds into the numerical representation."""
    return self.transformed_bounds

loglikelihood(self, value)

Compute the loglikelihood based on the prior.

Source code in parameterspace/parameters/base.py
def loglikelihood(self, value):
    """Compute the loglikelihood based on the prior."""
    return self.loglikelihood_numerical_value(self._transformation(value))

loglikelihood_numerical_value(self, numerical_value)

Compute the loglikelihood based on the prior.

Source code in parameterspace/parameters/base.py
def loglikelihood_numerical_value(self, numerical_value):
    """Compute the loglikelihood based on the prior."""
    return self._prior.loglikelihood(numerical_value) + np.log(
        self._transformation.jacobian_factor(numerical_value)
    )

num2val(self, numerical_value)

Translate the numerical representation into the actual value.

Source code in parameterspace/parameters/base.py
def num2val(self, numerical_value):
    """Translate the numerical representation into the actual value."""
    return self._transformation.inverse(numerical_value)

pdf_numerical_value(self, numerical_value)

Compute the PDF based on the prior.

Source code in parameterspace/parameters/base.py
def pdf_numerical_value(self, numerical_value):
    """Compute the PDF based on the prior."""
    return self._prior.pdf(numerical_value) * self._transformation.jacobian_factor(
        numerical_value
    )

sample_numerical_values(self, num_samples=None, random_state=<module 'numpy.random' from '/home/grl2rng/anaconda3/envs/py313/lib/python3.13/site-packages/numpy/random/__init__.py'>)

Generate random values based on the prior, but in the transformed space.

Source code in parameterspace/parameters/base.py
def sample_numerical_values(self, num_samples=None, random_state=np.random):
    """Generate random values based on the prior, but in the transformed space."""
    return self._prior.sample(num_samples, random_state=random_state)

sample_values(self, num_samples=None, random_state=<module 'numpy.random' from '/home/grl2rng/anaconda3/envs/py313/lib/python3.13/site-packages/numpy/random/__init__.py'>)

Generate randomly sampled values based on the prior.

Source code in parameterspace/parameters/base.py
def sample_values(self, num_samples=None, random_state=np.random):
    """Generate randomly sampled values based on the prior."""
    numerical_samples = self.sample_numerical_values(num_samples, random_state)
    if num_samples is None:
        return self._transformation.inverse(numerical_samples)
    return [
        self._transformation.inverse(num_value) for num_value in numerical_samples
    ]

val2num(self, value)

Translate a value into its numerical representation (incl. normalization).

Source code in parameterspace/parameters/base.py
def val2num(self, value):
    """Translate a value into its numerical representation (incl. normalization)."""
    if value is None:
        return self._inactive_numerical_value
    return self._transformation(value)