Categorical
CategoricalParameter (BaseParameter)
Categorical parameter that can take discrete values of any type.
Source code in parameterspace/parameters/categorical.py
class CategoricalParameter(BaseParameter):
"""Categorical parameter that can take discrete values of any type."""
@store_init_arguments
# pylint: disable-next=too-many-positional-arguments
def __init__(
self,
name: str,
values: Tuple[Any, ...],
prior: Union[list, np.ndarray, None] = None,
transformation: Optional[BaseTransformation] = None,
inactive_numerical_value: Optional[float] = np.nan,
):
"""
Initialize with options for categorical parameter.
Args:
name: Name of the parameter.
values: Allowed values for this parameter.
prior: Probabilities for each value (does not need to be normalized).
transformation: A transformation that can translate the arbitrary type of
the values to a numerical value. The only supported one right now
is [parameterspace.transformations.categorical.Cat2Num][], which is
also used as default.
inactive_numerical_value: [description]
"""
self.values = values
transformation = Cat2Num(values) if transformation is None else transformation
if prior is None:
_prior = Categorical([1.0] * len(values))
elif not isinstance(prior, Categorical):
_prior = Categorical(prior)
else:
_prior = prior
super().__init__(
name,
_prior,
transformation,
is_continuous=False,
is_ordered=False,
num_values=len(values),
inactive_numerical_value=inactive_numerical_value,
)
def check_value(self, value):
"""Check if value is valid."""
return value in self.values
__init__(self, name, values, prior=None, transformation=None, inactive_numerical_value=nan)
special
Initialize with options for categorical parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
Name of the parameter. |
required |
values |
Tuple[Any, ...] |
Allowed values for this parameter. |
required |
prior |
Union[list, numpy.ndarray] |
Probabilities for each value (does not need to be normalized). |
None |
transformation |
Optional[parameterspace.transformations.base.BaseTransformation] |
A transformation that can translate the arbitrary type of the values to a numerical value. The only supported one right now is parameterspace.transformations.categorical.Cat2Num, which is also used as default. |
None |
inactive_numerical_value |
Optional[float] |
[description] |
nan |
Source code in parameterspace/parameters/categorical.py
@store_init_arguments
# pylint: disable-next=too-many-positional-arguments
def __init__(
self,
name: str,
values: Tuple[Any, ...],
prior: Union[list, np.ndarray, None] = None,
transformation: Optional[BaseTransformation] = None,
inactive_numerical_value: Optional[float] = np.nan,
):
"""
Initialize with options for categorical parameter.
Args:
name: Name of the parameter.
values: Allowed values for this parameter.
prior: Probabilities for each value (does not need to be normalized).
transformation: A transformation that can translate the arbitrary type of
the values to a numerical value. The only supported one right now
is [parameterspace.transformations.categorical.Cat2Num][], which is
also used as default.
inactive_numerical_value: [description]
"""
self.values = values
transformation = Cat2Num(values) if transformation is None else transformation
if prior is None:
_prior = Categorical([1.0] * len(values))
elif not isinstance(prior, Categorical):
_prior = Categorical(prior)
else:
_prior = prior
super().__init__(
name,
_prior,
transformation,
is_continuous=False,
is_ordered=False,
num_values=len(values),
inactive_numerical_value=inactive_numerical_value,
)
check_value(self, value)
Check if value is valid.
Source code in parameterspace/parameters/categorical.py
def check_value(self, value):
"""Check if value is valid."""
return value in self.values