Ordinal
OrdinalParameter (BaseParameter)
Ordinal parameter that can take discrete values of any type.
Source code in parameterspace/parameters/ordinal.py
class OrdinalParameter(BaseParameter):
"""Ordinal parameter that can take discrete values of any type."""
@store_init_arguments
def __init__(
self,
name: str,
values: list,
*,
prior: Union[list, np.ndarray, None] = None,
transformation: Optional[BaseTransformation] = None,
inactive_numerical_value: Optional[float] = np.nan
):
"""
Initialize with options for ordinal parameter.
Args:
name: Name of the parameter.
values: Allowed values in ascending order for this parameter.
prior: List of (unnormalized) probablities for each value.
Default puts equal probablity for each value.
transformation: The only supported transformation right now
is [parameterspace.transformations.categorical.Cat2Num][],
which is also the default.
inactive_numerical_value: Placeholder value for this parameter
in case it is not active. Default is NaN.
"""
self.values = values
transformation = Cat2Num(values) if transformation is None else transformation
prior = Uniform() if prior is None else prior
super().__init__(
name,
prior,
transformation,
is_continuous=False,
is_ordered=True,
num_values=len(values),
inactive_numerical_value=inactive_numerical_value,
)
def check_value(self, value):
"""Check if value is valid."""
return value in self.values
__init__(self, name, values, *, prior=None, transformation=None, inactive_numerical_value=nan)
special
Initialize with options for ordinal parameter.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str |
Name of the parameter. |
required |
values |
list |
Allowed values in ascending order for this parameter. |
required |
prior |
Union[list, numpy.ndarray] |
List of (unnormalized) probablities for each value. Default puts equal probablity for each value. |
None |
transformation |
Optional[parameterspace.transformations.base.BaseTransformation] |
The only supported transformation right now is parameterspace.transformations.categorical.Cat2Num, which is also the default. |
None |
inactive_numerical_value |
Optional[float] |
Placeholder value for this parameter in case it is not active. Default is NaN. |
nan |
Source code in parameterspace/parameters/ordinal.py
@store_init_arguments
def __init__(
self,
name: str,
values: list,
*,
prior: Union[list, np.ndarray, None] = None,
transformation: Optional[BaseTransformation] = None,
inactive_numerical_value: Optional[float] = np.nan
):
"""
Initialize with options for ordinal parameter.
Args:
name: Name of the parameter.
values: Allowed values in ascending order for this parameter.
prior: List of (unnormalized) probablities for each value.
Default puts equal probablity for each value.
transformation: The only supported transformation right now
is [parameterspace.transformations.categorical.Cat2Num][],
which is also the default.
inactive_numerical_value: Placeholder value for this parameter
in case it is not active. Default is NaN.
"""
self.values = values
transformation = Cat2Num(values) if transformation is None else transformation
prior = Uniform() if prior is None else prior
super().__init__(
name,
prior,
transformation,
is_continuous=False,
is_ordered=True,
num_values=len(values),
inactive_numerical_value=inactive_numerical_value,
)
check_value(self, value)
Check if value is valid.
Source code in parameterspace/parameters/ordinal.py
def check_value(self, value):
"""Check if value is valid."""
return value in self.values