Skip to content

parameterspace.priors.normal

Normal

Stardand Gaussian prior.

loglikelihood(self, value)

Compute the log PDF (up to an additive constant) of a given value.

Note

Values for the priors are always after the transformation!

Parameters:

Name Type Description Default
value

[description]

required

Returns:

Type Description

[descriptions]

Source code in parameterspace/priors/normal.py
def loglikelihood(self, value):
    return self.sps_normal_dist.logpdf(value)

pdf(self, value)

Computes the PDF of a given value.

Note

Values for the priors are always after the transformation!

Parameters:

Name Type Description Default
value

[description]

required

Returns:

Type Description

[descriptions]

Source code in parameterspace/priors/normal.py
def pdf(self, value):
    return self.sps_normal_dist.pdf(value)

sample(self, num_samples=None, random_state=<module 'numpy.random' from '/home/runner/.cache/pypoetry/virtualenvs/parameterspace-9AYrJA9h-py3.8/lib/python3.8/site-packages/numpy/random/__init__.py'>)

Draw random samples from the prior.

Parameters:

Name Type Description Default
num_samples

[description]

None

Returns:

Type Description

[descriptions]

Source code in parameterspace/priors/normal.py
def sample(self, num_samples=None, random_state=np.random):
    return self.sps_normal_dist.rvs(size=num_samples, random_state=random_state)