Skip to content

parameterspace.priors.truncated_normal

TruncatedNormal

Truncated normal prior for bounded parameters.

loglikelihood(self, value)

Compute the log PDF (up to an additive constant) of a given value.

Note

Values for the priors are always after the transformation!

Parameters:

Name Type Description Default
value

[description]

required

Returns:

Type Description

[descriptions]

Source code in parameterspace/priors/truncated_normal.py
def loglikelihood(self, value):
    return self.sps_dist.logpdf(value)

pdf(self, value)

Computes the PDF of a given value.

Note

Values for the priors are always after the transformation!

Parameters:

Name Type Description Default
value

[description]

required

Returns:

Type Description

[descriptions]

Source code in parameterspace/priors/truncated_normal.py
def pdf(self, value):
    return self.sps_dist.pdf(value)

sample(self, num_samples=None, random_state=<module 'numpy.random' from '/home/runner/.cache/pypoetry/virtualenvs/parameterspace-9AYrJA9h-py3.8/lib/python3.8/site-packages/numpy/random/__init__.py'>)

Draw random samples from the prior.

Parameters:

Name Type Description Default
num_samples

[description]

None

Returns:

Type Description

[descriptions]

Source code in parameterspace/priors/truncated_normal.py
def sample(self, num_samples=None, random_state=npr):
    return self.sps_dist.rvs(size=num_samples, random_state=random_state)