parameterspace.transformations.categorical
Cat2Num
Translates any values into discrete, equidistant values between 0 and 1.
from_dict(json_dict)
inherited
[summary]
Source code in parameterspace/transformations/categorical.py
@staticmethod
def from_dict(json_dict: dict):
"""
[summary]
"""
transformation_class = json_dict["class_name"]
module_str, class_str = transformation_class.rsplit(".", 1)
module = importlib.import_module(module_str)
model_class = getattr(module, class_str)
return model_class(*json_dict["init_args"], **json_dict["init_kwargs"])
inverse(self, numerical_value)
Convert the numerical representation back to the true value with the proper type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numerical_value |
float |
Transformed/Numerical representation of a value. |
required |
Returns:
Type | Description |
---|---|
Any |
The value corresponding to the given value. Type depends no the kind of transformation. |
Source code in parameterspace/transformations/categorical.py
def inverse(self, numerical_value: float) -> Any:
return self.values[
int(
np.clip(
np.around(numerical_value * len(self.values) - 0.5),
0,
len(self.values) - 1,
)
)
]
jacobian_factor(self, numerical_value)
inherited
Factor to correct the likelihood based on the non-linear transformation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numerical_value |
float |
Transformed/Numerical representation of a value. |
required |
Returns:
Type | Description |
---|---|
float |
Jacobian factor to properly transform the likelihood. |
Source code in parameterspace/transformations/categorical.py
def jacobian_factor(self, numerical_value: float) -> float:
"""Factor to correct the likelihood based on the non-linear transformation.
Args:
numerical_value: Transformed/Numerical representation of a value.
Returns:
Jacobian factor to properly transform the likelihood.
"""
return 1.0
to_dict(self)
inherited
[summary]
Source code in parameterspace/transformations/categorical.py
def to_dict(self):
"""
[summary]
"""
json_dict = {
"class_name": type(self).__module__ + "." + type(self).__qualname__,
"init_args": self._init_args,
"init_kwargs": self._init_kwargs,
}
return json_dict