parameterspace.transformations.log_zero_one
LogZeroOneFloat
Maps bounded interval to [0,1] via a logarithmic transformation.
This means that all the priors used with a parameter effectively model the exponent of the actual quantity.
This class should be used for ContinuousParameters.
from_dict(json_dict)
inherited
[summary]
Source code in parameterspace/transformations/log_zero_one.py
@staticmethod
def from_dict(json_dict: dict):
"""
[summary]
"""
transformation_class = json_dict["class_name"]
module_str, class_str = transformation_class.rsplit(".", 1)
module = importlib.import_module(module_str)
model_class = getattr(module, class_str)
return model_class(*json_dict["init_args"], **json_dict["init_kwargs"])
inverse(self, numerical_value)
Convert the numerical representation back to the true value with the proper type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numerical_value |
float |
Transformed/Numerical representation of a value. |
required |
Returns:
Type | Description |
---|---|
float |
The value corresponding to the given value. Type depends no the kind of transformation. |
Source code in parameterspace/transformations/log_zero_one.py
def inverse(self, numerical_value: float) -> float:
return float(
np.clip(
np.exp(self.log_bounds[0] + numerical_value * (self.log_interval_size)),
self.input_bounds[0],
self.input_bounds[1],
)
)
jacobian_factor(self, numerical_value)
Factor to correct the likelihood based on the non-linear transformation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numerical_value |
float |
Transformed/Numerical representation of a value. |
required |
Returns:
Type | Description |
---|---|
float |
Jacobian factor to properly transform the likelihood. |
Source code in parameterspace/transformations/log_zero_one.py
def jacobian_factor(self, numerical_value: float) -> float:
return 1.0 / (self.log_interval_size * self.inverse(numerical_value))
to_dict(self)
inherited
[summary]
Source code in parameterspace/transformations/log_zero_one.py
def to_dict(self):
"""
[summary]
"""
json_dict = {
"class_name": type(self).__module__ + "." + type(self).__qualname__,
"init_args": self._init_args,
"init_kwargs": self._init_kwargs,
}
return json_dict
LogZeroOneInteger
Maps a bounded interval of integers to [0, 1] via a logarithmic transformation.
This means that all the priors used with a parameter effectively model the exponent of the actual quantity.
This class should be used for IntegerParameters.
from_dict(json_dict)
inherited
[summary]
Source code in parameterspace/transformations/log_zero_one.py
@staticmethod
def from_dict(json_dict: dict):
"""
[summary]
"""
transformation_class = json_dict["class_name"]
module_str, class_str = transformation_class.rsplit(".", 1)
module = importlib.import_module(module_str)
model_class = getattr(module, class_str)
return model_class(*json_dict["init_args"], **json_dict["init_kwargs"])
inverse(self, numerical_value)
[summary]
Source code in parameterspace/transformations/log_zero_one.py
def inverse(self, numerical_value: float) -> int:
"""
[summary]
"""
integer_value = np.around(
np.exp(self.log_bounds[0] + numerical_value * (self.log_interval_size))
)
# clip result to bound due to rounding problems when the numerical value is 0.0
return int(np.clip(integer_value, *self.input_bounds))
jacobian_factor(self, numerical_value)
Factor to correct the likelihood based on the non-linear transformation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
numerical_value |
float |
Transformed/Numerical representation of a value. |
required |
Returns:
Type | Description |
---|---|
float |
Jacobian factor to properly transform the likelihood. |
Source code in parameterspace/transformations/log_zero_one.py
def jacobian_factor(self, numerical_value: float) -> float:
return 1.0 / (self.log_interval_size * self.inverse(numerical_value))
to_dict(self)
inherited
[summary]
Source code in parameterspace/transformations/log_zero_one.py
def to_dict(self):
"""
[summary]
"""
json_dict = {
"class_name": type(self).__module__ + "." + type(self).__qualname__,
"init_args": self._init_args,
"init_kwargs": self._init_kwargs,
}
return json_dict