TorchPhysics
Welcome to TorchPhysics, a Python library of deep learning methods for solving differential equations. Currently, TorchPhysics implements methods like PINN [1] and DeepRitz [2] which enable the user to
solve ordinary and partial differential equations
train a neural network to approximate solutions for different parameters
solve inverse problems and interpolate external data via the above methods
TorchPhysics can also be used in other deep learning approaches for differential equations since it is built in a modular way. For example, TorchPhysics offers a way to sample points in arbitrary, easy-to-define, domains flexibly.
Guide
All kind of information (features, installation, etc.) to TorchPhysics can be found under the Overview tab.
As an introduction to TorchPhysics a Tutorial exists. There we will present and explain the most important aspects and structure of this library. Under the Examples tab additional applications, in form of Jupyter Notebooks, can be found.
API Reference
Information for all classes, functions and methods can be found in the following documentation: